Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
biorxiv; 2024.
Препринт в английский | bioRxiv | ID: ppzbmed-10.1101.2024.03.25.586578

Реферат

Long noncoding RNAs (lncRNAs) are a newer class of noncoding transcripts identified as key regulators of biological processes. Here we aimed to identify novel lncRNA targets that play critical roles in major human respiratory viral infections by systematically mining large-scale transcriptomic datasets. Using bulk RNA-sequencing (RNA-seq) analysis, we identified a previously uncharacterized lncRNA, named virus inducible lncRNA modulator of interferon response ( VILMIR ), that was consistently upregulated after in vitro influenza infection across multiple human epithelial cell lines and influenza A virus subtypes. VILMIR was also upregulated after SARS-CoV-2 and RSV infections in vitro . We experimentally confirmed the response of VILMIR to influenza infection and interferon-beta (IFN-β) treatment in the A549 human epithelial cell line and found the expression of VILMIR was robustly induced by IFN-β treatment in a dose and time-specific manner. Single cell RNA-seq analysis of bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients uncovered that VILMIR was upregulated across various cell types including at least five immune cells. The upregulation of VILMIR in immune cells was further confirmed in the human T cell and monocyte cell lines, SUP-T1 and THP-1, after IFN-β treatment. Finally, we found that knockdown of VILMIR expression reduced the magnitude of host transcriptional responses to IFN-β treatment in A549 cells. Together, our results show that VILMIR is a novel interferon-stimulated gene (ISG) that regulates the host interferon response and may be a potential therapeutic target for human respiratory viral infections upon further mechanistic investigation.


Тема - темы
Respiratory Tract Infections , COVID-19 , Influenza, Human
2.
biorxiv; 2024.
Препринт в английский | bioRxiv | ID: ppzbmed-10.1101.2024.02.03.578756

Реферат

In vitro models play a major role in studying airway physiology and disease. However, the native lungs complex tissue architecture and non-epithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue has not been established. We describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology, characteristic epithelial, endothelial, stromal and immune cell populations, and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate explants with recovery of function 14 days post-thaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.


Тема - темы
Virus Diseases
3.
biorxiv; 2022.
Препринт в английский | bioRxiv | ID: ppzbmed-10.1101.2022.03.23.485512

Реферат

Infectivity assays are essential for the development of viral vaccines, antiviral therapies and the manufacture of biologicals. Traditionally, these assays take 2-7 days and require several manual processing steps after infection. We describe an automated assay (AVIATM), using machine learning (ML) and high-throughput brightfield microscopy on 96-well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. ML models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit to virus dilution curves, yielded an R2 higher than 0.98 and a linear dynamic range comparable to or better than conventional plaque or TCID50 assays. Because this technology is based on sensitizing AIs to specific phenotypes of infection, it may have potential as a rapid, broad-spectrum tool for virus identification.

Критерии поиска